Approximating Uniform Triangular Meshes in Polygons

نویسندگان

  • Franz Aurenhammer
  • Naoki Katoh
  • Hiromichi Kojima
  • Makoto Ohsaki
  • Yin-Feng Xu
چکیده

Given a convex polygon P in the plane and a positive integer n, we consider the problem of generating a length-uniform triangular mesh for the interior of P using n Steiner points. More specifically, we want to find both a set Sn of n points inside P , and a triangulation of P using Sn, with respect to the following minimization criteria: (1) ratio of the maximum edge length to the minimum one, (2) maximum edge length, and (3) maximum triangle perimeter. These problems can be formalized as follows: Let V be the set of vertices of P . For an n-point set Sn interior to P let T (Sn) denote the set of all possible triangulations of Sn ∪ V . Further, let l(e) denote the (Euclidean) length of edge e, and let peri(∆) be the perimeter of triangle ∆.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Subdivision Schemes for Triangular Meshes

Of late we have seen an increase in the use of subdivision techniques for both modeling and animation. They have given rise to a new surface called the subdivision surface which has many advantages over traditional Non Uniform Rational B-spline (NURB) surfaces. Subdivision surfaces easily address the issues related to multiresolution, re nement, scalability and representation of meshes. Many sc...

متن کامل

Cell-vertex discretization of shallow water equations on mixed unstructured meshes

Finite-volume discretizations can be formulated on unstructured meshes composed of different polygons. A staggered cell-vertex finite-volume discretization of shallow water equations is analyzed on mixed meshes composed of triangles and quads. Although triangular meshes are most flexible geometrically, quads are more efficient numerically and do not support spurious inertial modes of triangular...

متن کامل

Isometric Morphing of Triangular Meshes

We present a novel approach to morph between two isometric poses of the same non-rigid object given as triangular meshes. We model the morphs as linear interpolations in a suitable shape space S. For triangulated 3D polygons, we prove that interpolating linearly in this shape space corresponds to the most isometric morph in R. We extend this shape space to arbitrary triangulations in 3D using a...

متن کامل

3D Mesh Coarsening via Uniform Clustering

In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Cen...

متن کامل

Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids

We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 289  شماره 

صفحات  -

تاریخ انتشار 2000